Phosphorus Deficiency Inhibits Cell Division But Not Growth in the Dinoflagellate Amphidinium carterae

نویسندگان

  • Meizhen Li
  • Xinguo Shi
  • Chentao Guo
  • Senjie Lin
چکیده

Phosphorus (P) is an essential nutrient element for the growth of phytoplankton. How P deficiency affects population growth and the cell division cycle in dinoflagellates has only been studied in some species, and how it affects photosynthesis and cell growth remains poorly understood. In the present study, we investigated the impact of P deficiency on the cell division cycle, the abundance of the carbon-fixing enzyme Rubisco, and other cellular characteristics in the Gymnodiniales peridinin-plastid species Amphidinium carterae. We found that under P-replete condition, the cell cycle actively progressed in the culture in a 24-h diel cycle with daily growth rates markedly higher than the P-deficient cultures, in which cells were arrested in the G1 phase and cell size significantly enlarged. The results suggest that, as in previously studied dinoflagellates, P deficiency likely disenables A. carterae to complete DNA duplication or check-point protein phosphorylation. We further found that under P-deficient condition, overall photosystem II quantum efficiency (Fv/Fm ratio) and Rubisco abundance decreased but not significantly, while cellular contents of carbon, nitrogen, and proteins increased significantly. These observations indicated that under P-deficiency, this dinoflagellate was able to continue photosynthesis and carbon fixation, such that proteins and photosynthetically fixed carbon could accumulate resulting in continued cell growth in the absence of division. This is likely an adaptive strategy thereby P-limited cells can be ready to resume the cell division cycle upon resupply of phosphorus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Diversity, Morphological Uniformity and Polyketide Production in Dinoflagellates (Amphidinium, Dinoflagellata)

Dinoflagellates are an intriguing group of eukaryotes, showing many unusual morphological and genetic features. Some groups of dinoflagellates are morphologically highly uniform, despite indications of genetic diversity. The species Amphidinium carterae is abundant and cosmopolitan in marine environments, grows easily in culture, and has therefore been used as a 'model' dinoflagellate in resear...

متن کامل

Amphidinolide C2, New Macrolide from Marine Dinoflagellate Amphidinium Species

A new cytotoxic 25-membered macrolide, amphidinolide C2 (1), has been isolated from marine dinoflagellate Amphidinium sp. (Y-71 strain), and the structure 1 was elucidated on the basis of spectroscopic data and chemical means.

متن کامل

Characterization of Acetyl-CoA Carboxylases in the Basal Dinoflagellate Amphidinium carterae

Dinoflagellates make up a diverse array of fatty acids and polyketides. A necessary precursor for their synthesis is malonyl-CoA formed by carboxylating acetyl CoA using the enzyme acetyl-CoA carboxylase (ACC). To date, information on dinoflagellate ACC is limited. Through transcriptome analysis in Amphidinium carterae, we found three full-length homomeric type ACC sequences; no heteromeric typ...

متن کامل

Relationships between geotaxis/phototaxis and diel vertical migration in autotrophic dinoflagellates

Marine dinoflagellate diel vertical migrations are often conceptually explained by a species' geotactic and phototactic preferences, but actual simultaneous measurements are rare. Newly collected simultaneous measurements on Heterocapsa (Cachonina) illdefina (Herman and Sweeney) and Gymnodinium breve (Davis) are combined with similar literature information on Amphidinium carterae (Hulbert), Per...

متن کامل

Use of Antibiotics for Maintenance of Axenic Cultures of Amphidinium carterae for the Analysis of Translation

Most dinoflagellates in culture are bacterized, complicating the quantification of protein synthesis, as well as the analysis of its regulation. In bacterized cultures of Amphidinium carterae Hulbert, up to 80% of protein synthetic activity appears to be predominantly bacterial based on responses to inhibitors of protein synthesis. To circumvent this, axenic cultures of A. carterae were obtaine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016